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Abstract 

 

Data Envelopment Analysis (DEA) is a mathematical programming approach for 

measuring relative efficiencies within a group of decision making units based on 

multiple inputs and outputs. However, the number of inputs and outputs affects the 

discrimination level in efficiency evaluation of DMUs. This study introduces the 

concept of entropy to measure the importance of factors and uses the entropy values 

to identify the omitted factor(s). This method enables the decision maker to deter-

mine the less influential factor for omission between two highly correlated factors. It 

does not only improve the discrimination in the DEA evaluation but also retain in-

formation for further ranking. 
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Introduction 

 

The Data Envelopment Analysis 

(DEA) method, first proposed by 

Charnes et al. (1978), is widely known 

as an evaluation technique for effi-

ciency rating within a group of deci-

sion making units (DMUs) based on  

 

multiple inputs and outputs. The effi 

ciency of a DMU within the DEA 

frame is defined as the ratio of multi-

ple weighted outputs to multiple 

weighted inputs. Under the DEA re-

striction that no DMU has more than 

100% efficiency, the weights are cho-

sen to show that a specific DMU is as 
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efficient as possible. DEA is a widely 

utilized technique to deal with effi-

ciency evaluation and is often found in 

the management literature (for exam-

ple, Chen and Bao 2013; Chen, 2011; 

Chang and Chen, 2008). 

 

In efficiency measures, the number 

of inputs and outputs will affect the 

discrimination level and computa-

tional time in DEA evaluation. Based 

on the DEA frame, the more DMUs in 

the DEA model, the more constrained 

the weights, and the higher discrimi-

nation level the DEA result has. On 

the other hand, the more factors in the 

DEA model, the less discerning the 

analysis is. Because omitting factor(s) 

can have many advantages in DEA 

evaluation, there has been much work 

down in DEA to reduce the number of 

factors. To achieve a reasonable level 

of discrimination, a number of guide-

lines have been proposed in the litera-

ture suggesting limiting the number of 

variables relative to the number of 

DMUs. Two guidelines commonly ap-

plied are that the total number of in-

puts and outputs should be less than 

one third of the number of DMUs in 

the DEA model (Friedman and Sinu-

any-Stern, 1998) or that the number of 

DMUs should be at least two times the 

product of the number of inputs and 

number of outputs (Dyson et al., 

2001). 

The principal component analy-

sis is a popular approach to reduce the 

number of factors, and it has been 

widely applied to deal with this task 

(e.g. Adler and Golany, 2001; Ueda 

and Hoshiai, 1997; Zhu, 1998). The 

principal component is a linear com-

bination of factors so that the data 

used in the DEA model is not the 

original data of inputs and outputs. 

Another study from Jenkins and 

Anderson (2003) discussed the choice 

of variables to omit. They applied the 

regression and correlation analysis to 

reduce the number of factors that are 

highly correlated. They normalized the 

original data of all the factors to have 

a mean of zero and a variance of one, 

suggested trying all the combinations 

to find which factors best represent all 

the data, and used partial covariance 

of inputs or outputs as a measure of 

information contained in these re-

tained variables. Recently, Wagner and 

Shimshak (2007) proposed a proce-

dure of stepwise selection of variables, 

in a way similar to the stepwise re-

gression method, that involves se-

quentially maximizing (or minimizing) 

the average change in the efficiencies 

as variables are added or dropped from 

the DEA model. However, although 

trying all the combinations to find the 

best represent factors is robust, it 

needs complex computations. 
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The earlier approach to reduce the 

number of factors arose from observ-

ing that often many of them were 

highly correlated, and one or more of 

the highly correlated variables could 

simply be omitted (Charnes, et al., 

1988; Jenkins and Anderson, 2003; 

Kao et al., 1993; Saen et al., 2005). 

However, which factor(s) should be 

omitted and which should be retained 

is rarely obvious. Rather than only 

looking at the correlation coefficients 

of inputs or outputs and arbitrarily de-

ciding which factor(s) to be omitted, 

this study focuses on determining the 

less influential factor by utilizing the 

entropy measure of each factor impor-

tance. 

  

This paper aims to advance the 

work on factor omission method to 

DEA modeling by utilizing the en-

tropy measure of factors importance 

and is organized as follows. In Section 

2, we present the method of entropy 

measure of factors importance. Sec-

tion 3 demonstrates the proposed ap-

proach by using is a numerical exam-

ple. Our conclusions are offered in 

Section 4. 

 

Entropy Measure Of Factor  

Importance 

 

The efficiency evaluation of DEA 

is a kind of information processing 

activity in which efficiency-relevant 

information is evaluated via in-

puts/outputs. In this sense, the factors 

serve as information sources. The 

more information is emitted by the ith 

factor (i.e., the ith information source), 

the more relevant the factor is in a 

given efficiency-evaluation situation. 

Therefore, the importance of a factor 

can be related to the amount of infor-

mation that can be transmitted to the 

efficiency evaluation. This amount of 

information can be measured by an 

adapted entropy measure.  

 

Suppose there are n DMUs to be 

evaluated by using s outputs and m 

inputs, and we denote iky  as the ith 

output and rkx  as the rth input of 

DMUk, where all iky  and rkx  are 

greater than zero. The value set of 

outputs can be written as 

),,,( 21 skkk
k yyyy   and that of 

inputs is ),,,( 21 mkkk
k xxxx  , 

n...k ,,2,1 . To measure the entropy 

of factors importance, this study scales 

the data based on the ideal value of 

each factor. Specifically, if for factor i 

a larger value means better perform-

ance (commonly the outputs), we scale 

the data by the formula 
*

i

ik
ik

y

y
d  , 

s...i ,,2,1 , where 
iy  is denoted as 
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the ideal value of factor i (i.e. 

}{max*
ik

k
i yy  ). The ikd  is the 

scaled value on factor i of DMUk. 

Conversely, if for factor r a smaller 

value means better performance 

(commonly the inputs), we scale the 

data by the formula 
rk

*
r

rk x

x
d  , 

m...r ,,2,1 , where 
rx  is denoted 

as the ideal value of factor r (i.e. 

}{min*
rk

k
r xx  ). Through the scaling 

procedure, the value of each ikd  

should be in the range of zero to one, 

i.e. 10  ikd , )(,,2,1 ms...i   

and n...k ,,2,1 , and all inputs have 

the same effect orientation as outputs. 

If 1ikd , it means DMUk achieves 

the best performance on factor i  

among all DMUs. The less divergent 

the values ikd s are, the less important 

the ith factor becomes. Notably, the 

purpose of this data scaling technique 

is to transform all the data in the range 

of zero to one for comparison. 

 

We use Equation (1) given by Ze-

leny (1982) for the entropy measure of 

factor i. 

1

1
( ) [ ln( )]

ln

n
ik ik

k i i

d d
e i

n D D

   , (1) 

where 



n

k
iki dD

1

, 

)(,,2,1 ms...i  , and ln denotes the 

natural logarithm. Based on Equation 

(1), we have 0 ( ) 1e i  . The larger 

( )e i  is, the less information is trans-

mitted by factor i (Zeleny, 1982). If all 

ikd  become identical for a given fac-

tor i, then 
nD

d

i

ik 1
  and ( )e i  as-

sumes its maximum value and is equal 

to one. Actually, if ( ) 1e i  , the factor 

i would not transmit any useful infor-

mation at all for discrimination. If 

there are two outputs (or inputs), 

namely factors i and j, and those are 

highly correlated, it means that the 

information of one factor can be sub-

stituted adequately by the other. 

Moreover, if ( )e i  is larger than ( )e j , 

then factor i is a less influential factor 

and it can be omitted to reduce the 

number of factors. 

 

The entropies of factors provide 

the information of which highly cor-

related factor(s) should be omitted. 

The procedure to identify omission 

factors is as follows: 

 

Step 1. Calculate the correlation 

coefficients and the en-

tropies of importance for 

all factors.  

Step 2. Omit the output (or input) 

factor with a larger value 

of entropy between the 

factors with the highest 
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absolute value of correla-

tion coefficient within 

outputs (or inputs).  

Step 3. Repeat Step 2 until the 

number of the retained 

outputs/inputs satisfies 

some guidelines. 

  

 Before determining which fac-

tors to omit, the correlation coeffi-

cients for all factors are necessary. The 

omission procedure starts with the two 

outputs (or inputs) with the highest 

absolute value of correlation coeffi-

cient and we omit the less influential 

factor, the one with larger entropy, and 

then repeat this in descending order of 

absolute correlation coefficient to 

conclude the omission procedure.  

 

Average intrinsic information of a 

factor can be measured through the 

entropy measure. Note that the more 

distinct and divergent the values, the 

larger amount of efficiency informa-

tion is contained in and transmitted by 

the factor. Any reevaluation of factor 

values or any addition or removal of 

DMUs will change the entropies of 

factors. The importance of each factor 

thus changes dynamically. 

 

Numerical Example 

 

The purpose of this section is to 

demonstrate how the proposed ap-

proach determines the less influential 

factors. An example, originally pub-

lished in the study of Hokkanen and 

Salminen (1997), is illustrated, and 

Sarkis (2000) applied a number of 

different DEA models to the same data 

with categorization of all criteria to be 

minimized as DEA inputs and those to 

be maximized as DEA outputs. There 

are twenty-two DMUs assessed with 

five inputs (X1, X2, X3, X4 and X5) 

and three outputs (Y1, Y2 and Y3) 

based on Sarkis’ categorization. The 

total number of inputs and outputs 

does not satisfy any guidelines. We 

attempt to omit at least one factor in 

this example, and the original data is 

presented in Table 1. 

 

Table 2 shows the correlation co-

efficients of factors highlighting the 

strong correlation, and Table 3 is the 

entropies of all factors derived from 

Equation (1). The strongest correlation 

coefficient in Table 2 is -0.96 corre-

sponding to inputs X2 and X4. Be-

cause X2 and X4 are highly correlated 

and the entropy of X2 (0.999) is less 

than that of X4 (1.000), X4 is a less 

influential factor. We omitted X4 and 

then the number of efficient DMUs is 

fifteen (see Table 4), one less than that 

of the full factor DEA model.
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Table 1. The original data of the numerical example 

 

Inputs  Outputs  

DMU X1 X2 X3 X4 X5  Y1  Y2 Y3 

1 656 552678100 609 1190 670   14 13900 

2 786 539113200 575 1190 682   18 23600 

3 912 480565400 670 1222 594   24 39767 

4 589 559780715 411 1191 443   10 13900 

5 706 532286214 325 1191 404   14 23600 

6 834 470613514 500 1226 384    6.5 18 40667 

7 580 560987877 398 1191 430   10 13900 

8 682 532224858 314 1191 393   14 23600 

9 838 466586058 501 1229 373    6.5 22 41747 

10 579 561555877 373 1191 405    9 13900 

11 688 532302258 292 1191 370   13 23600 

12 838 465356158 499 1230 361    6.5 17 42767 

13 595 560500215 500 1191 538   12 13900 

14 709 532974014 402 1191 489   17 23600 

15 849 474137314 648 1226 538    6.5 20 40667 

16 604 560500215 500 1191 538   12 13900 

17 736 532974014 402 1191 489   17 23600 

18 871 474137314 648 1226 538    6.5 20 40667 

19 579 568674539 495 1193 538    7 13900 

20 695 536936873 424 1195 535   18 23600 

21 827 457184239 651 1237 513   16 45167 

22 982 457206173 651 1239 513   16 45167 

 

 

Table 2. Correlation coefficients of factors 

 

Factor X1 X2 X3 X4 X5 Y1 Y2 Y3 

X1 1.00        

X2 -0.93 1.00       

X3 0.63 -0.57 1.00      

X4 0.86 -0.96 0.67 1.00     
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X5 0.08 0.15 0.63 -0.11 1.00    

Y1      1.00   

Y2      -0.43 1.00  

Y3      -0.49 0.76 1.00 

 

 

Table 3. The entropies of all factors 

 

Factor X1 X2 X3 X4 X5 Y1 Y2 Y3 

Entropy 0.996  0.999  0.990  1.000  0.995  0.993  0.987  0.969  

 

After omitting X4, the retained 

factors include four inputs and three 

outputs satisfying the guideline that 

the number of inputs and outputs is 

less than one third of the number of 

DMUs. To reduce the number of fac-

tors and to attain a higher discrimina-

tion level in the DEA evaluation, the 

omission candidates are X1 and X2, 

since their absolute correlation coeffi-

cient is the largest one after omitting 

X4. The entropies shown in Table 3 

indicate that X2 is a less influential 

factor compared to X1, so that X2 is 

omitted and the number of efficient 

DMUs is twelve, with three less effi-

cient DMUs than when omitting only 

X4. Although omitting (X1, X4) and 

(X2, X4) render the same number of  

efficient DMUs, omitting (X2, X4) is 

a better choice, since its total effi-

ciency score (21.369) is larger than 

that (21.106) of omitting (X1, X4) (see  

the last row of Table 5). It means that  

the retained inputs (X1, X3 and X5)  

 

contain more information than that of 

retained inputs (X2, X3 and X5). If the 

decision maker wants to omit another 

factor, the best candidates are Y2 and 

Y3, since they have strong correlation, 

with a coefficient of 0.76. Based on 

the entropies, omitting Y2 is better 

than omitting Y3. Under the situation 

of omitting X2, X4 and Y2, the num-

ber of efficient DMUs is reduced to 

five and the total efficiency score at-

tains 20.036. The efficiency scores of 

DMUs by omitting multiple factors 

are presented in Tables 5. 

 

The goal of the proposed method 

is to omit the less influential factors 

but to retain more information for fur-

ther ranking. If a DMU becomes inef-

ficient after omitting the less influen-

tial factor(s), but it is efficient in the 

full factor DEA model, it means that 

this DMU does not have better per-

formance with the retained factors. In 

other words, this type of DMU is not 
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truly efficient. Based on the proposed 

approach to omit the less influential 

factors, the discrimination level will 

be increased and the ranking of effi-

cient DMUs will be more efficient in 

computation.  

 

Table 4. DEA efficiencies of DMUs after omitting one factor 

 

Efficiency  

 

DMU 

Full fac-

tors 

Without 

X1 

Without 

X2 

Without  

X4 

Without 

Y2 

Without  

Y3 

1 0.837 0.727 0.837 0.837 0.603 0.837 

2 0.871 0.803 0.871 0.871 0.584 0.871 

3 1.000 1.000 1.000 1.000 0.891 1.000 

4 1.000 1.000 1.000 1.000 1.000 1.000 

5 0.991 0.991 0.991 0.987 0.972 0.991 

6 0.984 0.984 0.984 0.981 0.981 0.954 

7 1.000 1.000 1.000 1.000 1.000 1.000 

8 1.000 1.000 1.000 1.000 0.987 1.000 

9 1.000 1.000 1.000 1.000 0.990 1.000 

10 1.000 1.000 1.000 1.000 1.000 1.000 

11 1.000 1.000 1.000 1.000 1.000 1.000 

12 1.000 1.000 1.000 1.000 1.000 0.961 

13 1.000 1.000 1.000 1.000 1.000 1.000 

14 1.000 1.000 1.000 1.000 0.914 1.000 

15 0.978 0.978 0.978 0.960 0.928 0.963 

16 1.000 1.000 1.000 1.000 1.000 1.000 

17 1.000 1.000 1.000 0.987 0.914 1.000 

18 0.978 0.978 0.978 0.959 0.928 0.963 

19 1.000 0.998 1.000 1.000 1.000 1.000 

20 1.000 0.963 1.000 1.000 0.821 1.000 

21 1.000 1.000 1.000 1.000 1.000 1.000 

22 1.000 1.000 0.999 1.000 0.999 1.000 

Number of 

efficient 

DMUs 

16 13 15 15 8 15 
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Table 5. DEA efficiencies of DMUs after omitting multiple factors 

 

 

 

DMU 

Without 

(X1 

and 

X2) 

Without 

(X1 

and 

X4) 

Without 

(X2 

and 

X4) 

Without 

(X1, 

X2 and 

Y3) 

Without 

(X2, 

X4 and 

Y3) 

Without 

(X2, 

X4 and 

Y2) 

Without 

(X1, 

X4 and 

Y2) 

1 0.727 0.623 0.837 0.727 0.837 0.594 0.623 

2 0.803 0.714 0.871 0.803 0.871 0.581 0.713 

3 1.000 1.000 1.000 1.000 1.000 0.813 1.000 

4 1.000 1.000 0.985 1.000 0.985 0.983 1.000 

5 0.991 0.986 0.968 0.990 0.968 0.953 0.986 

6 0.984 0.981 0.971 0.923 0.917 0.972 0.954 

7 1.000 1.000 1.000 1.000 1.000 0.998 1.000 

8 1.000 1.000 1.000 1.000 1.000 0.987 1.000 

9 1.000 1.000 1.000 1.000 1.000 0.984 1.000 

10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

11 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

12 1.000 1.000 1.000 0.961 0.961 1.000 0.961 

13 1.000 1.000 1.000 1.000 1.000 0.973 1.000 

14 1.000 0.970 1.000 1.000 1.000 0.892 0.970 

15 0.978 0.959 0.952 0.957 0.909 0.895 0.959 

16 1.000 1.000 0.990 1.000 0.990 0.959 1.000 

17 1.000 0.970 0.984 1.000 0.984 0.869 0.970 

18 0.978 0.959 0.928 0.957 0.887 0.879 0.959 

19 0.998 0.984 1.000 0.998 1.000 1.000 0.984 

20 0.963 0.960 1.000 0.963 1.000 0.821 0.960 

21 1.000 1.000 1.000 0.898 0.806 1.000 1.000 

22 0.999 1.000 0.883 0.897 0.706 0.883 1.000 

Number of 

efficient 

DMUs 

13 12 12 11 10 5 11 

Total score 21.421 21.106 21.369 21.074 20.821 20.036 21.039 
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Conclusion 

 

The greater the number of inputs 

and outputs in a DEA model, the 

higher the dimensionality of the LP 

solution space, the less the discrimina-

tion level, and the more computational 

time will be required. In order to 

achieve a higher discrimination level 

of the DMUs, a common approach to 

reduce the number of factors in DEA 

model is to omit factors highly corre-

lated with those retained. Unfortu-

nately, the research literature rarely 

specifies the exact logic of which fac-

tor(s) to omit and which to retain. This 

study introduces entropy measure of 

factors importance to identify the less 

influential factor(s) suitable for omis-

sion. The scaling technique based on 

the ideal value is analogous to the 

DEA frame that calculates efficiency 

scores based on the frontier. 

  

The proposed approach can also be 

applied to omit factors with a correla-

tion coefficient that is beyond a spe-

cific threshold (for example 0.7) to 

reduce computations for further rank-

ing, even though the total number of 

inputs and outputs has satisfied some 

guidelines in a DEA model. Because 

of omitting factor(s) may loss some 

information, there is no one method-

ology can be prescribed as the com-

plete solution to the question of factor 

selection in DEA modeling. This pa-

per provides another viewpoint of data 

reduction for factor(s) omission by 

utilizing the entropy measure of factor 

importance. Based on the entropy 

measures associated with the correla-

tion coefficients of factors, decision 

makers can make an appropriate omis-

sion decision. 
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